Paper Reference(s)

6684/01 Edexcel GCE

Statistics S2

Advanced Level

Friday 24 May 2013 – Morning

Time: 1 hour 30 minutes

Materials required for examination Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S2), the paper reference (6684), your surname, other name and signature.

Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. This paper has 7 questions. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

P42035A This publication may only be reproduced in accordance with Edexcel Limited copyright policy ©2013 Edexcel Limited

1. A bag contains a large number of 1p, 2p and 5p coins.

50% are 1p coins 20% are 2p coins 30% are 5p coins

A random sample of 3 coins is chosen from the bag.

(a) List all the possible samples of size 3 with median 5p.	
(b) Find the probability that the median value of the sample is $5n$	(2)
(b) This the probability that the median value of the sample is 5p.	(4)
(c) Find the sampling distribution of the median of samples of size 3.	(5)
	(5)

- The number of defects per metre in a roll of cloth has a Poisson distribution with mean 0.25.
 Find the probability that
 - (*a*) a randomly chosen metre of cloth has 1 defect,
 - (b) the total number of defects in a randomly chosen 6 metre length of cloth is more than 2. (3)

(2)

(5)

A tailor buys 300 metres of cloth.

(c) Using a suitable approximation find the probability that the tailor's cloth will contain less than 90 defects.

- 3. An online shop sells a computer game at an average rate of 1 per day.
 - (a) Find the probability that the shop sells more than 10 games in a 7 day period.

(3)

Once every 7 days the shop has games delivered before it opens.

(*b*) Find the least number of games the shop should have in stock immediately after a delivery so that the probability of running out of the game before the next delivery is less than 0.05.

(3)

In an attempt to increase sales of the computer game, the price is reduced for six months. A random sample of 28 days is taken from these six months. In the sample of 28 days, 36 computer games are sold.

(c) Using a suitable approximation and a 5% level of significance, test whether or not the average rate of sales per day has increased during these six months. State your hypotheses clearly.

(7)

(2)

(2)

- 4. A continuous random variable X is uniformly distributed over the interval [b, 4b] where b is a constant.
 - (a) Write down E(X).

	(1)
21.2	

- (b) Use integration to show that $Var(X) = \frac{50}{4}$. (3)
- (c) Find Var(3-2X).

Given that b = 1, find

- (*d*) the cumulative distribution function of *X*, F(x), for all values of *x*,
- (e) the median of X. (1)

5. The continuous random variable *X* has a cumulative distribution function

$$F(x) = \begin{cases} 0, & x < 1, \\ \frac{x^3}{10} + \frac{3x^2}{10} + ax + b, & 1 \le x \le 2, \\ 1, & x > 2, \end{cases}$$

where *a* and *b* are constants.

(*a*) Find the value of *a* and the value of *b*.

(b) Show that
$$f(x) = \frac{3}{10}(x^2 + 2x - 2), \quad 1 \le x \le 2.$$

(c) Use integration to find E(X).

- (d) Show that the lower quartile of X lies between 1.425 and 1.435.
- (3)

(4)

(4)

- 6. In a manufacturing process 25% of articles are thought to be defective. Articles are produced in batches of 20.
 - (a) A batch is selected at random. Using a 5% significance level, find the critical region for a two tailed test that the probability of an article chosen at random being defective is 0.25.

You should state the probability in each tail, which should be as close as possible to 0.025. (5)

The manufacturer changes the production process to try to reduce the number of defective articles. She then chooses a batch at random and discovers there are 3 defective articles.

(*b*) Test at the 5% level of significance whether or not there is evidence that the changes to the process have reduced the percentage of defective articles. State your hypotheses clearly.

(5)

- 7. A telesales operator is selling a magazine. Each day he chooses a number of people to telephone. The probability that each person he telephones buys the magazine is 0.1.
 - (*a*) Suggest a suitable distribution to model the number of people who buy the magazine from the telesales operator each day.

(1)

(*b*) On Monday, the telesales operator telephones 10 people. Find the probability that he sells at least 4 magazines.

(3)

(c) Calculate the least number of people he needs to telephone on Tuesday, so that the probability of selling at least 1 magazine, on that day, is greater than 0.95.

(3)

A call centre also sells the magazine. The probability that a telephone call made by the call centre sells a magazine is 0.05. The call centre telephones 100 people every hour.

(*d*) Using a suitable approximation, find the probability that more than 10 people telephoned by the call centre buy a magazine in a randomly chosen hour.

(3)

TOTAL FOR PAPER: 75 MARKS

END

Question Number	Schem	ie	Marks	
1(a)	(5,5,5) or (1,5,5) or (2,5,5)	B1		
	$(5,5,5)$ $(5,5,1)$ $(5,1,5)$ $(1,5,5)$ $(5,5,2)$ (or $(5,5,5)$ and $(5,5,1)$ (\times 3) and $(5,5,2)$	B1 (2)		
1(b)	(5,5,5) $\left(\frac{3}{10}\right)^3 = \frac{27}{1000} = 0.027$		B1	
	(5,5,1) $3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 = \frac{135}{1000} o^2$	$r\frac{27}{200} = 0.135$	M1	
	(5,5,2) $3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2 = \frac{54}{1000} =$	$\frac{27}{500} = 0.054$		
	$P(M = 5) = \left(\frac{3}{10}\right)^3 + 3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 + 3 \times \frac{1}{2} \times \frac$	$\left(\frac{1}{5} \times \left(\frac{3}{10}\right)^2 = \frac{27}{125} = 0.2$	A1A1 (4)	
1(c)	$P(M = 1) = (0.5)^3 + 3(0.5)^2(0.2) + 3(0.5)^2(0.$	(0.3)	M1	
	= 0.5		A1	
	$P(M=2) = \left(\frac{1}{r}\right)^3 + 3 \times \left(\frac{1}{r}\right)^2 \times \frac{1}{2} + 3 \times \frac{1}{2}$	$\left(\frac{1}{r}\right)^2 \times \frac{3}{10} + 6 \times \frac{1}{2} \times \frac{1}{r} \times \frac{1}{r}$	$\frac{3}{10}$ M1	
	$= 0.284 \text{ or } \frac{71}{270} \text{ oe}$		Al	
	m 1	2 5] A1	
	P(M = m) = 0.5 (0)	0.284 0.216] (5)	
			marks	
	Notes	5		
1(a)	1^{st} B1 for two of the given triples, a 2^{nd} B1 for all 7 cases no incorrect ϵ	ny order extras		
1(b)	B1 $\left(\frac{3}{12}\right)^3$ or 0.027 oe. This can b	e a single term in a summ	ation	
	M1 either "3" $\times \frac{1}{2} \times \left(\frac{3}{2}\right)^2$ or "3"	$\times \frac{1}{2} \times \left(\frac{3}{2}\right)^2$ oe. May om	it the 3 \times or have	
	another positive integer in place of the 3. These may be seen as a single			
	term in a summation $(2)^3 = (2)^2 = (2)^2$			
	A1 $\left(\frac{3}{10}\right)^3 + 3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 + 3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2$ oe			
1(a)	A1 0.216 oe 1^{SL} (1) correct coloridation for $P(M = 1)$ correction must be chosen			
1(0)	1 st M1 correct calculation for $P(M = 1)$ or $P(M = 2)$, working must be shown and not implied by a correct answer.			
	1 st A1 either $P(M = 1)$ or $P(M = 2)$ correct			
	2^{nd} M1 correct calculation for both P($M = 1$) and P($M = 2$), or their probabilities adding up to 1, but do not allow probabilities of 0.5, 0.2 and 0.3			
	2^{nd} A1 both $P(M = 1)$ and $P(M = 2)$	correct		
	3 rd A1dep on both M marks awarded.	All three values written d	own with their	
	table.	part (c) but they do not no	eu to be in a	
	NB A fully correct table with no working	will get M0 A0 M1 A1 A0.		
Question Number	Scheme		Marks	

2(a)	$P(X=1) = 0.25e^{-0.25} = 0.1947$	awrt 0.195	M1A1
			(2)
2(b)	<i>X</i> ~Po(1.5)		B1
	$P(X > 2) = 1 - P(X \le 2)$		M1
	= 1 - 0.8088		
	= 0.1912	awrt 0.191	A1
			(3)
2(c)	$[\lambda = 300 \times 0.25 = 75]$		
	<i>X</i> ~N(75,75)		B1 B1
	$P(X < 90) = P(X \le \frac{89.5 - 75}{5})$		M1M1
	√75 ×		
	$= P(Z \le 1.6743)$		
	= awrt 0.953 or 0.952		A1
			(5)
			Total 10 marks
	Notes		
2(a)	M1 0.25e ^{-0.25} o.e		
2(b)	B1 stating or using Po(1.5)		
	M1 stating or using 1 - $P(X \le 2)$		
2(c)	1 st B1 for normal approximation and correc	et mean	
	2^{nd} B1 Var (X) = 75or sd = $\sqrt{75}$ or awrt 8.0	66 (may be given if corre	ct in standardisation
	formula)		
	1 st M1 using either 89.5 or 88.5	d their ad using [00 5 00	5 or 901 and for
	2 th M1 Standardising using their mean and their sd, using [89.5, 88.5 or 89] and for finding correct area		
	NB use of Poisson gives an answer of 0.	9498 and gains no mar	ks
		, , , , , , , , , , , , , , , , , , ,	

Question Number	Scheme	Marks	
3 (a)	$X \sim Po(7)$	B1	
	$P(X > 10) = 1 - P(X \le 10)$	M1	
	= 1-0.9015 = 0.0985 awrt 0.0985	A1	
		(3)	
3(b)	$P(X > d) < 0.05$ Or $P(X \ge d) < 0.05$	MI	
	$P(X \le a) > 0.95 \qquad P(X < a) > 0.95 P(X < 11) = 0.9467 \qquad P(X < 12) = 0.9467$	IVI I	
	$P(X \le 12) = 0.9730$ $P(X \le 12) = 0.9730$ $P(X \le 13) = 0.9730$	Al	
	Least number of games =12 Least number of games 13	A1	
		(3)	
3(c)	H ₀ : $\lambda = 1$, ($\mu = 28$) H ₁ : $\lambda > 1(\mu > 28)$	B1	
	$Y \sim Po(28)$ approximated by N(28,28)	B1	
	$P(Y \ge 36) = P(Z \ge \frac{35.5 - 28}{\sqrt{28}})$ 1.6449 = $\frac{x - 0.5 - 28}{\sqrt{28}}$	28 	
	$\sqrt{28}$ $\sqrt{28}$		
	= 0.0778 or 1.42 < 1.6449 CR X > 37.2	A 1	
	0.0778 > 0.05 so do not reject H ₀ /not significant. Not in CR	M1	
	There is no evidence that the average rate of sales per day has	Alcso	
	increased.	(7)	
		Total 13	
	Notes	IIIaIKS	
3 (a)	B1 stating or using Po(7)		
	M1 stating or using 1 - $P(X \le 10)$		
3(b)	M1 using or writing $P(X > d) < 0.05$ or $P(X < d) > 0.95$ (condone \ge instead of $>$ and \le instead of $<$) May be implied by correct answer. Different letters may be used. 1 st A1 $P(X \le 12)/P(X < 13) = awrt 0.973$ or $P(X \le 11) / P(X < 12) = awrt 0.947$ May be implied by a correct answer 2 nd A1 12 or 13 NB An answer of 12/13 on its own with no working gains M1A1A1		
3(c)	 1st B1 both hypotheses correct using λ or μ, and 1 or 28 2nd B1 for writing or using a normal approximation with correct mean and Var (may be given if sd correct in standardisation formula) 1st M1 for use of a continuity correction 35.5 or 36.5 or x ± 0.5 2nd M1 Standardising using their mean and their sd. If they have not written down a mean and sd then these need to be correct here to award the mark. They must use [35.5, 36.5, 36, x or x ± 0.5] For CR must have = awrt 1.64 or 1.65 1st A1 awrt 0.0778 or 0.9222 or the statement 1.42 < awrt 1.65/1.64 or CR X ≥ 37.2/X > 37.2 3rd M1 a correct conclusion for their probability. May be implied by a correct contextual conclusion. NB Non contextual contradicting statements gets M0 2nd A1 a correct contextual conclusion for their hypotheses and a fully correct solution with no errors seen. Need the words "rate/average number", "sales" and "increased" or example. 		
	NB It found $P(X = 36)$ they can get B1B10M0A0M0A0		
Question Number	Scheme	Marks	

4 (a)	$E(X) = \frac{5b}{2} $ B1	(1)
4(b)	$Var(X) = E(X^2) - (E(X))^2$	
	$= \int_{-\infty}^{4b} \frac{x^2}{x^2} dx - (\frac{5b}{2})^2 $ M1	
	$ \begin{bmatrix} 3b & 3b \\ 3b \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} x^3 \end{bmatrix}^{4b} \\ 25b^2 \end{bmatrix} $ M1	d
	$= \left[\frac{9b}{9b}\right]_b - \frac{1}{4}$	
	$=\frac{63b^3}{2b}-\frac{25b^2}{2b}$	
	9b 4 $^{3b^2}$ A1	cso
	4	(3)
4(c)	$Var(3 - 2X) = 4Var(X)$ $= 2h^2$ MI	
	$= 3b^{-}$	(2)
4(d)		D1
	$\begin{array}{c c} 0 & x < 1 \\ \end{array} \qquad \qquad$	BI (2)
	$\mathbf{F}(x) = \begin{cases} \frac{x-1}{3} & 1 \le x \le 4 \end{cases}$	(-)
	$1 \qquad x > 4$	
4(e)	$\frac{x-1}{3} = 0.5$ so $x = 2.5$ B1	(1)
		Total 9 marks
Alt 4(b)	$Var(X) = \int_{a}^{b} \frac{(x-\bar{x})^2}{b-a} dx$	
	$= \int_{a}^{4b} \frac{4x^2 - 20bx + 25b^2}{4x^2 - 20bx + 25b^2} dx$ M1	
	$\begin{bmatrix} \frac{4x^3}{2} - 10bx^2 + 25b^2x \end{bmatrix}^{4b}$ M1	
	$= \left \frac{3}{12b} \right _{b}$	
	$=\frac{9b^3}{2b}$	
	$ \begin{array}{c} 12b\\ 3b^2 \end{array} $ A1	cso(3)
	$=\frac{1}{4}$	
4(b)	Notes NB remember the answer is given (AG) so they must show their worki	ng
	1 st M1 for using $\int \frac{x^2}{2x} dx$ - (their (a)) ² limits not needed and condone missi	ng d <i>x</i> . NB
	need	
	not use the letter x but if they use b instead do not award if they can	cel down to $\frac{b}{3}$
	NB Check they have subtracted $(\text{their}(a))^2$	5
	2 nd M1 dependent on previous M being awarded. For some correct integrat	$\lim_{x \to \infty} x^n \to x^{n+1}$
	A1 for correct solution with no incorrect working seen.	l (40)
4(c)	M1 for writing or using $4Var(X)$	1 (>
4(d)	2^{nd} B1 top and bottom line. Allow use of \leq instead of \leq and \geq instead of \leq and \geq instead of \leq	au oi >
Juestion	Scheme	Marks
Number 5(a)		M1
5(a)	$F(1) = 0, \frac{1}{10} + a + b = 0$	1 VI 1
		A1

		0 4		
		$a = -\frac{3}{2}$ or $b = \frac{1}{2}$		
		F(2) = 1, 2 + 2a + b = 1	M1	
		F(2) = 1, 2 + 2u + b = 1		
		Solving gives $a = -\frac{1}{5}$, $b = \frac{1}{5}$		
		Alt	(4	1)
		$F(2) - F(1) = 1, 2 + 2a + b - \frac{4}{10} - a - b = 1$	M1	
		$a = -\frac{3}{2}$	A1	
		F(2) = 1 or F(1) = 0		
		$2 - \frac{6}{5} + b = 1$ or $\frac{4}{10} - \frac{3}{5} + b = 0$	M1	
		$b = \frac{1}{2}$	A1 (4))
		~ 5		
	5(b)	Differentiating cdf gives $f(x) = \frac{3}{10}x^2 + \frac{6}{10}x + a$, $1 \le x \le 2$		
		$\frac{10}{3}$ (2 + 2 - 2)	B1 cso	
		$=\frac{10}{10}(x^2+2x-2)$	(1	l)
-	5(c)	$\Gamma(X) = \int_{-\infty}^{2} \frac{3}{3} \left(\frac{3}{3} + 2 \frac{2}{3} - 2 \right) 1$		
		$E(X) = \int_{1}^{1} \frac{1}{10} (x^{2} + 2x^{2} - 2x) dx$	MI	
		$3 \begin{bmatrix} 1 & 4 & 2 & 3 & 3 \end{bmatrix}^2$		
		$= \frac{1}{10} \left[\frac{1}{4} x^{2} + \frac{1}{3} x^{3} - x^{2} \right]_{1}$	MIG AI	
		$=\frac{13}{1}$	A1	
		8	(4	1)
	5(d)	F(1.425) = 0.24355, F(1.435) = 0.25227	M1A1	
		0.25 lies between F(1.425)and F(1.435) hence result.	A1 (3))
		Notes	Total 12 mark	ks
	5(a)	1^{st} M1 using F(1) = 0 Clear attempt to form a linear equation for <i>a</i> and	d <i>b</i>	
	C(u)	1 st A1 either $a = -0.6$ or $b = 0.2$ Previous M must be awarded		
		2^{nd}_{nd} M1 using F(2) = 1. Clear attempt to form a second linear equation 1	for a and b	
		2^{nd} A1 if 1^{st} A1 awarded then both <i>a</i> and <i>b</i> must be correct otherwise a	ward if	
		either $a = -0.6$ or $b = 0.2$ alt $1^{\text{st}} \text{ M1} = F(2) - F(1) = 1$ Leading to a value for $a: 1^{\text{st}} \text{ A1} = -0.6$		
		2^{nd} M1 using F(2) = 1 or F(1) = 0. Leading to a value for <i>b</i> : 2^{nd}	A1 $b = 0.2$	
		NB correct values for a and b with no working scores no marks.		
	5(b)	B1 They must differentiate and then factorise. cso		
	5(c)	1^{st} M1 for clear attempt to use $xf(x)$ with an intention of integrating (Int	tegral sign	
		enough) Ignore limits. Must substitute in $f(x)$ or "their $f(x)$ ".		
		2 nd M1d dependent on previous M being awarded for some correct inte	gration at least	
		one correct term with the correct coefficient.	:4 a	
		1 A1 for fully correct (possibly unsimplified) integration. Ignore im 2^{nd} A1 A scort 1.62 and 1.625 or some other exact equivalent	its	
	5(d)	M_1 expression showing substitution of 1.425 or 1.435 into $F(x)$ [or i	nto $F(r) = 0.251$	
	J(u)	[or putting their $F(x) = 0.25$ and attempting to solve leading to $x =$] M	av be implied by	
		either pair of the correct answers as given below for the 1 st A1	5 1 5	
		1^{st} A1 awrt 0.244 and awrt 0.252 [or awrt -0.00645 and awrt 0.00227] [or $x = awrt 1.432$]	
		2^{114} A1 0.25 lies between F(1.425) and F(1.435) [or change in sign there between I for "1.425" lies between 1.425 for the form	fore root	
		between] [or 1.452 nes between 1.425 and 1.435 therefore roo between]. Statement must be true for their method	π	
L	Question	settienj. Statement must be true for then method		
	Number	Scheme	Marks	
		<u>V</u> D(20.0.25)	M1	4
	$\mathbf{u}(\mathbf{a})$	P(X > 10) = 1 - 0.9861 - 0.0139	A 1	
		P(X < 1) = 0.0243	Al	
	1			- I

	$(0 \le) X \le 1 \cup 10 \le X (\le 20)$	A1A1
		(5)
6(b)	H ₀ : $p = 0.25$ H ₁ : $p < 0.25$ $X \sim B(20.0.25)$	B1
	$P(X \le 3) = 0.2252$ or CR $X \le 1$	M1A1
	Insufficient evidence to reject H_0 , Accept H_0 , Not significant. 3 does not lie in the Critical region.	M1d
	No evidence that the changes to the process have reduced the percentage of defective articles (oe)	Alcso
		(5)
		Total 10 marks
	Notes	
6(a)	M1 using B(20,0.25) may be implied by a correct CR (allow w probability statement) 1^{st} A1 awrt 0.0139 2^{nd} A1 awrt 0.0243 3^{rd} A1 $X \le 1$ or $0 \le X \le 1$ or $[0,1]$ or 0,1 or equivalent states 4^{th} A1 $X \ge 10$ or $10 \le X \le 20$ or $10,11,12,13,14,15,16,17,18$ or equivalent statements NB These two A marks must be for statements with X (any letter) on probability statements and SC for CR written as $1 \ge X \ge 10$ gets A	ritten as a ments 3,19,20 or [10,20] .ly – not in A1 A0
6(b)	6(b) B1 both hypotheses with p 1^{st} M1 using B(20, 0.25) and finding P($X \le 3$) or P($X \ge 4$) may be implied by correct CR 1^{st} A1 0.2252 (allow 0.7748) if not using CR or CR $X \le 1$ or $X < 2$ 2^{nd} M1dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non contextual statements) A1 cso Conclusion must contain the words changes/new process oe, reduced number/percentage oe , and defective articles/defectives . There must be no incorrect working seen.	

Question Number	Scheme	Marks	
7(a)	Distribution $X \sim B(n, 0, 1)$	B1	
		(1)	
7(b)	Y~B(10,0.1)	B1	
	$P(Y \ge 4) = 1 - P(Y \le 3)$	M1	
	= 1 - 0.9872		
	= 0.0128	A1	
		(3)	
7(c)	$0.0^n < 0.05$ or $1 (0.0)^n > 0.05$	M1	
	$0.9^{\circ} < 0.03^{\circ} \text{ of } 1 - (0.9)^{\circ} > 0.93^{\circ}$ $n > 28.4^{\circ}$	Δ 1	
	n = 29	Al	
	alternative		
	B(28,0.1): P(0) = 0.0523	M1	
	B(29,0.1): $P(0) = 0.0471$	A1	
	n = 29	Alcao	
- / ->		(3)	
7(d)	$C \sim Po(5)$	B1	
	$P(C > 10) = 1 - P(C \le 10)$	M1	
	= 1 - 0.9863		
	= 0.0137	AI	
		(3) Total marks 10	
	Notes		
7(a)	B1 for "binomial" or B(
7(b)	B1 writing or using B(10,0.1)		
	M1 writing or using $1 - P(Y \le 3)$		
7(a)	A1 awrt 0.0128 M1 $(0.0)^n < 0.05$ co. or $(0.0)^n = 0.05$ co. or $(0.0)^n > 0.05$ co. or a	ooing 0.0522 or	
/(C)	1000000000000000000000000000000000000		
	$1^{\text{st}} \text{A1} [P(0)] = 0.0471$ or getting awrt 28.4 May be implied by correct answer.		
	2^{nd} A1 cao $n = 29$ should not come from incorrect working.		
	NB An answer of 29 on its own with no working gains M1A1A	1	
7(d)	B1 writing or using Po(5)		
	M1 writing or using $1 - P(C \le 10)$		
	A1 awit 0.013 /		